منابع مشابه
2 Packing and Covering
The basic problems in the classical theory of packings and coverings, the development of which was strongly influenced by the geometry of numbers and by crystallography, are the determination of the densest packing and the thinnest covering with congruent copies of a given body K. Roughly speaking, the density of an arrangement is the ratio between the total volume of the members of the arrange...
متن کاملOn Approximating Four Covering and Packing Problems
In this paper, we consider approximability issues of the following four problems: triangle packing, full sibling reconstruction, maximum profit coverage and 2-coverage. All of them are generalized or specialized versions of set-cover and have applications in biology ranging from fullsibling reconstructions in wild populations to biomolecular clusterings; however, as this paper shows, their appr...
متن کاملOnline Mixed Packing and Covering
In many problems, the inputs to the problem arrive over time. As each input is received, it must be dealt with irrevocably. Such problems are online problems. An increasingly common method of solving online problems is to solve the corresponding linear program, obtained either directly for the problem or by relaxing the integrality constraints. If required, the fractional solution obtained is t...
متن کاملPacking and covering induced subdivisions
A graph class $\mathcal{F}$ has the induced Erd\H{o}s-P\'osa property if there exists a function $f$ such that for every graph $G$ and every positive integer $k$, $G$ contains either $k$ pairwise vertex-disjoint induced subgraphs that belong to $\mathcal{F}$, or a vertex set of size at most $f(k)$ hitting all induced copies of graphs in $\mathcal{F}$. Kim and Kwon (SODA'18) showed that for a cy...
متن کاملPacking and Covering Dense Graphs
Let d be a positive integer. A graph G is called d-divisible if d divides the degree of each vertex of G. G is called nowhere d-divisible if no degree of a vertex of G is divisible by d. For a graph H, gcd(H) denotes the greatest common divisor of the degrees of the vertices of H. The H-packing number of G is the maximum number of pairwise edge disjoint copies of H in G. The H-covering number o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 1985
ISSN: 0195-6698
DOI: 10.1016/s0195-6698(85)80023-8